

Method: Density Functional Theory (DFT) with relativistic effects included	
• $E[\rho] = \int d\vec{r} v_{ext}(\vec{r})\rho(\vec{r}) + T_s[\rho] + U[\rho] + E_x[\rho] + E_c[\rho]$	
• Generalized Gradient Approximat to the exchange & correlation • $\left[-\frac{\hbar^2}{2m}\vec{\nabla}^2 + v_{ext}(\vec{r}) + v_H(\vec{r}) + v_x\right]$ • Relativistic effects, spin-orbit coupling included, are taken into account through relativistic pseudopotentials (used also to account for electron - ion interaction)	ion (GGA) $E_{xc}^{GGA}[\rho] = \int d\vec{r} f_{xc}(\rho(\vec{r}), \nabla \rho(\vec{r}))$ $(\vec{r}) + v_c(\vec{r}) \int \varphi_i(\vec{r}) = \varepsilon_i \varphi_i(\vec{r})$ $\rho(\vec{r}) = \sum_{i=i}^N \varphi^*_i(\vec{r}) \varphi_i(\vec{r})$ Codes used: $\nabla \mathcal{ASP}$ $\Box OUT OWN$

